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Analysis of Tracking Performance of the MTDD Costas Loop
for UQPSK Signal

Y. H. Park

Telecommunications Systems Section

Even though the Costas loop for the Multimegabit Telemetry Demodulator/Detector
{MTDD) System was originally designed for support of BPSK signalling, its inherent
tracking capability for an unbalanced quadriphase shift-keyed (UQPSK) signal is well
known. This paper summarizes analytic results to predict rms phase jitter of the MTDD
Costas loop for a UQPSK signal. The Costas loop has a hard-limited in-phase channel,

l. Introduction

This paper summarizes the analytic results to predict the tracking performance of the breadboard Costas loop (Refs. 1, 2) for
the Multimegabit Telemetry Demodulator/Detector (MTDD) System using an unbalanced quadriphase-shift-keyed (UQPSK)
signal. The particular Costas loop is a biphase polarity-type with passive arm filters. The loop contains a hard-limiter in front of
the third multiplier, which is a chopper-type device. The merits of the polarity-type Costas loop have been well explained in
Refs. 3 and 4.

Reference 4 has an excellent analysis on the polarity-type Costas loop tracking performance. However, the numerical results
shown in the paper are not directly applicable to the prediction of the MTDD Costas loop at or in the vicinity of the design point
SNR level. Basically, this paper extends the analysis of Ref. 4 to low input SNR cases.

The rms phase jitter predictions made in this paper have also been verified experimentally (Ref. 2).

Il. Analysis

Since most of the analysis has been well documented in Ref. 4, only the minimum necessary equations will be summarized in
this section for the sake of self-containment.

A. Loop Equation

The loop under consideration is shown in Fig. 1. Let the input signal be an unbalanced quadriphase-shift-keyed (UQPSK)
signal.

$(8) = V/ZP, m(t) sin () + /2P, m, (1) cos B(2) (1)
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w, = angular carrier frequency
A = 3 A nsine smlanan

e PR N
6(t) = received carrier phase

=8, +Q,t

6 _ = arandom phase

2., = a doppler frequency offset

0
m.,(t), m,(f) = binary data respectively for in-phase (7)) and quadrature-phase (@) channels

P,,P = average signal power respectively for/ and Q channels.

The total received signal with additive noise is:
x(2) = s(r) +nfe) (2)
where n(7) is the additive bandpass channel noise which can be expressed in the following form (Ref. 5):

n(® = V2 {Nc(r) cos B(#) - N,(7) sin q>(z)} (3)

where N,(7) and N(¢) are approximately statistically independent, stationary, white Gaussian processes with single-sided noise
spectral density No(W/Hz).

Define the quadrature reference signals

r(f) = VZK, sin ()

. “)
r () = V2K | cos ®(r)
where K"I’ is the rms power of the VCO output signal and cf)(r) is the phase estimate of ®(2).
Then, phase detector outputs are:

e =K xOr() = KK, [\[—13 m(0) - Ns(t)] 05 9(1)
-K, K [\/1—’: m,(2) +Nc(t)] sin ¢(7)

e () = K, x(Or,(t) =K K, [\/JT2 m,(t) - Ns(t)] sin ¢(¢)
tK K, [\_/Pl m, (¢) +Nc(t)] cos ¢(7) (5)
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where ¢(¢) = ®(¢) - 715(1‘) =045~ 50 is the loop phase error, and X, is the multiplier gain of the in-phase and quadrature-phase
detectors. Then, the output signals of the in-phase and quadrature-phase arm filters with transfer function G(s) are:

A ~
z(t) = Gp)e 1) = K, Km{[\,/P—2 i, (8) - Ns(t)] cos (1)
- [V w0+ 8,0) sn oo

A ~
z (1) = G(p)e (t) = K, Km{ [\/P_2 i, (1) - Ns(t)] sin ¢(2)

¥ [\/P‘1 i, () +1Vc(r)] cos ¢(r)} (6)
where
mfe) = G(p) m(D) i=12
N () = GEIN (0 o= s

G(p) = the Heaviside notation of the transfer function

In the derivation of Eq.(6), it is assumed that ¢(7) is small, and unaffected by filtering. The output z,(#) of the chopper
multiplier is given by product of z (¢) and the hard-limited z(z):

zo(0) = z, (O sgn [2,(0] = K, K, {\/172‘ () 7iz) sin 9(2)
++/P, i, () i(t) cos @) - N () 7i(z) sin ¢(z)

+N () #i(2) cos ¢(r)} (7

where
A
At = sen [2,0]

sgn(x) = x/|x]|.
The instantaneous frequency of the VCO output is related to z,(¢) by
dd(t
L0 - K, 1F0) 240)] + o, ®)

where K, is the VCO gain in radians/volts. Then, the stochastic integro-differential equation of loop operation becomes

d“’(t) = 20, KF(p){2\/_ ,(£) Fi(2) sin §(2)
+2+/P it (£) Pi(Z) cos ¢(z)
+ 2 M) N[z, 9(D)] } ' )]
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A
where K =K, K,, K,,and

Rt 60] = 5,0) co5 40~ 7,0 sin ) (10

As shown in Ref. 4, in the linear region of the loop the equation of loop operation can be approximately obtained:

B - 20,- KFo) { VB, 71,00+ 7,0, 29) | an
where
N(t,20) = 27ir) Nz, 9) + n, (¢, 29) (12)
n, = self noise
- 2\/2[;%1@) iCe) - <ﬁz_1(?)777(?7>] (13)

< > denotes the time average.
The overbar denotes the ensemble average

fi (x) = anonlinearity which is periodic in x with period 2m and has unit slope at the origin

& = the signal suppression factor

d% [( A, DD sin ¢@) + M, () M) Y cos ¢(t)] o

B. Signal Suppression Factor

Reference 4 first derived the signal suppression factor & for NRZ in-phase channel data and any quadrature channel binary data
assuming single-pole (RC) Butterworth arm filters. The total suppression factor @ can be expressed conveniently as the sum of a,
and o, where «, is actually the suppression factor in the absence of the Q-channel and «, is a negative quantity which is a signal
suppression due to the interference of the Q-channel. Thus,

¥=oa,ta (14)

where

Py
erf - (15)

2=

1 f
@, = % J {1 -2 exp[-2(Bl./R2)x]} . erf{ p_22 {1 -2 exp[—2(Bi/R2)x]}} dx +
0
20, 1 1 e, 2 f 2p, 1 Py
4 T TDml 2 0 o {~7 {1 "2 exp[_Z(Bi/RZ)X]} FNNTT Dml PR (_ 7) (16)

Q-to-l channel power ratio )

=2
i}
l
1l
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fol =
2 NoB,
wc
B, = 5 = two-sided arm filter input bandwidth
w _ = the 3-dB cutoff frequency of the arm filter with a transfer function

r
w
1+) —=
wC

Q
~
€
~—
1t

= respectively / and Q channel data rates

D, . is the mean-squared power for the quadrature-channel data. For NRZ Q channel data,

D =1

1
m, " 3BR. BJR, [1- exp(-2B,/R )]

For a Manchester coded modulation in @ channel,

D =1

m, - ﬁ}m—l [3-4 exp(—B,/Rl) + exp(—2Bl./R1)]

Using Egs. (14) through (22), we can calculate the signal suppression factor by numerical integration.

C. Equivalent Noise Spectral Density for Small Input SNR

A
N, = 2 [Rg (ndr

The equivalent noise spectral density is defined by:

where

A -~
Ry () =N 2,20/ N (t+7,29)
e
with straightforward derivation, Ref. 4 showed that
Ry (m) =8 [ [Rfv\('r) +P R;;‘l('r)] Ry('r) dr
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where

A ey
() = sgn{\/P2 (1) - Ns(t)} (26)
NyB; —2B.r|
Rg(m) = —%’— e H @7
le(T) is given below
For a NRZ modulation (Ref. 3),
—2B,/R -2B,I7|
Il € i 1cosh2Bz.'r—e i
1- 4= + L O<Ir T
T, 2B,JR, 1
R, (1) = , (28)
1 -2B.\1!
e ' [cosh2B/R -1]
T <<
2B!./R1 ,Tl\|T[\oo
For a Manchester coded modulation (Ref. 4),
-B,/R, -2B,/R ~2B,7|
o lde iR TRy cosh2B,7-3¢ T,
1-3—+ ;0 Irl< =
T, 2B R, 2
-2B,Ir| ~2B,/R
R | Il e 1 [4coshB/R, -3]-e i 1cosh2Bl.7' T1< - -
- ={ - [1-—=} L <
NG ) S 5 <m<T, (9
—2B. |7l
¢ ' [4coshB/R, - cosh2B /R, - 3]
i1 1 T L | oo
2B/R, ol

where T, = 1/R,T, = 1/R,

Reference 3 presents approximate expressions for R y(T) corresponding to small p, and large p, cases.

Since we are concerned here with the low p, case, then we have:

R,¢,2(0) p3(7) Rmz(f)

Yog(n-p +p

R (1) =—i— st (30)
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where

—2Bi'r
pg(r) = e
~2B,/R, 28,7
€ 2 cosh 2B;7- e !
1~T+ JOSITIST,
2 ZBI./R2
Ry (@) = @D
-28, 7|
e ' [cosh 2B[/R2 - 1]
<
2Bl./R2 T2 |7] oo
e L- e——zBi/R2
~ = 1 - 32
m2( ) ZB'./R2 ( )

Now we have all the equations needed to compute the equivalent noise spectral density. Since an analytic integration of the
integral in Eq. (25) is cumbersome, a numerical integration may be attempted. However, R (7) in Eq. (30) contains terms which
go to infinity when 7 =0. Thus, a change of forms of equation is required.

First let’s approximate the integration region 0 < |r| < 2T, . Also let’s consider § defined by:

Ne
8= n (33)
Then,
5 2T,
8= W . [RI»\~,(T)+P1 R;ﬁl(T)] R (r)dr (34)
Bk}

As in the calculation of the signal suppression factor, the total equivalent noise factor § may be expressed as the sum of two
factors 8, and §,:

B=8,*8,
where
2
B, = v, f R{(MR () dr (35)
2P,
= N— j Ry MR, dr (36)

It is observed that §, is the noise factor in the absence of Q channel and §; is the increase of noise due to the presence of O
channel data.
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By change of variable 2T,x = 7, we have

Bi ! 2x
g, =4 R j exp(—4Bi/R2)Ry (R—) dx 37

2 0 2

_ B, 1 Dx 2
bmon k[, (B () o .

where
2Pl
P17 N3, (39)
(-2B./R.) cosh (4 5y e
exp(-2B, cos = x) - gk)
2x\ _ Rl 1 Rz )
Rﬁ1 (E;) —1—2xR—2+ 2£ (40)
Rl
e o)
= 4=t 41
g(x exp sz (41)
For0<x<0.5,
2\ _2 | o Vg |, PC2BR) TG |
R, (Rz) - [}m g(x)+p2( T + BR, )
o, 2 L (42)
2 V1 +g(x) Vh(x)

M) = 1-g) = ax (1 - & of. Er o ) (43)
a = 4B R, (44)

Equation (42) is obtained from (30) and (31) after straightforward derivation. Taylor series expansion of g(x) is used to
prevent an overflow in a numerical integration at the vicinity of x = 0. For 0.5 <x < 1, a straightforword substitution in Eq. (30),
(31) and (32) gives
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D. RMS Phase Jitter
In a linear region of the loop, the rms phase jitter of ¢ is given (Ref. 4) by

o} = i (45)
p = NOPBL (46)
where
P=P +P,
B, = single-sided loop bandwidth
Ny = single-sided noise spectral density
S, = squaring loss
~2
IRe +17,,) T “
v, =P, /P,

We already have obtained all necessary equations to calculate the squaring loss S . Thus the only thing left is to express the
loop bandwidth B; as a function of input SNR.

The loop filter of the Costas loop under consideration is of the imperfect second-order loop type with the following transfer
function:

1+7,s8
F(s) = Thrs (48)
The bandwidth of the loop is shown in Ref. 6 to be
_ Yy 1
B, == \§*7¢ (49)
where
K
W, T T natural angular frequency
1
1+K 7, i
¢ = 201, = loop damping factor

K = total loop gain
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Suppose K, is the loop gain at the design point, i.e., at PT, /Ny =~-4 dB (Ref. 1). Then, the loop gain at a arbitrary SNR is
given by:

@ g/P
K=K, = == (50)
aO (go P)
where &, @ are the signal suppression factors respectively at the design point and a desired SNR, g,, g are the AGC or MGC IF
gain control factor at the design point or a desired SNR.

Using (49) and (50), we can obtain the loop bandwidth at any SNR level. Thus we are now ready to calculate the rms phase
jitter at any SNR level.

1. Numerical Results and Discussions

Figures 2-9 show the plots of squaring loss for various conditions. Figure 10 shows the rms phase jitter for the MTDD
breadboard Costas loop with various conditions (see also Ref. 7). The rms phase jitter is a function of PT, /N, Yp and R,/R,.
Obviously, the phase jitter will decrease as PT, /N increases, v, decreases or R, /R, increases.

Generally, for low input SNR or PT, /N, in the range from -4 to +2 dB, the squaring loss is an increasing function of PT, INg.
At higher PT, /N, the trend reverses (Ref. 4). However, as mentioned above, the rms phase jitter is a monotonically decreasing
function of PT,/N,,.
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